MATHEMATICS APPLICATIONS

MAWA Semester 2 (Units 3 & 4) Examination 2018

Calculator-Assumed

Marking Key

© MAWA, 2018

Licence Agreement

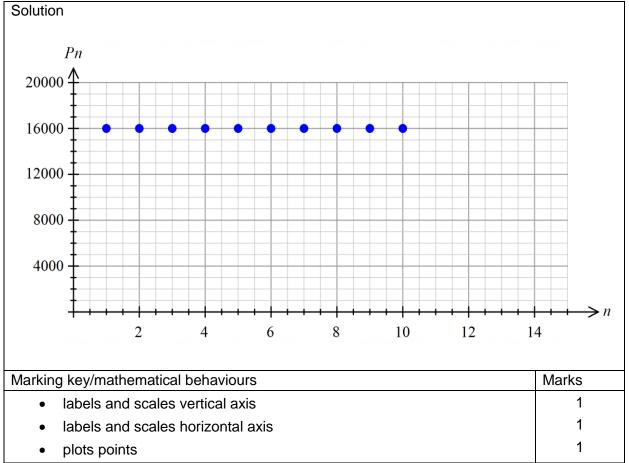
This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is

• the end of week 1 of term 4, 2018

(100 Marks)


Question 7 (a)

Solution	
6.25% of 16000 = 1000	
Marking key/mathematical behaviours	Marks
• determines 6.25% of 16000	1

Question 7 (b)

Solution	
$P_{n+1} = P_n \times 1.0625 - 1000, P_1 = 16000$	
Marking key/mathematical behaviours	Marks
expresses relationship in correct format with first term	1
identifies correct ratio	1

Question 7 (c)

Question 8 (a)

Solution		
4-point cycle.		

Values at quarter = 2,6,10,14 and 18 are quite high compared to the other values.		
Marking key/mathematical behaviours Marks		
identifies a 4-point cycle	1	
 refers to the graph to justify conclusion 	1	

Question 8 (b)

Solution	
Downward trend.	
Peaks and troughs are getting lower	
Marking key/mathematical behaviours	Marks
describes trend	1
justifies trend	1

Question 8 (c)

Solution	
Summer 2021	
Marking key/mathematical behaviours	Marks
identifies season associated with occurrence	1

Question 8 (d)

Solution	
369 ÷ ((369+249+261+298) ÷ 4) x 100	
Marking key/mathematical behaviours	Marks
identifies the expression to calculate percentage of seasonal mean	1

Question 8 (e)

Solution	
$(89 + 80 + 70 + 81) \div 4 = 80\%$	
Marking key/mathematical behaviours	Marks
determines seasonal index	1

Question 8 (f)

Solution	
207 ÷ 0.8 = 259	
Marking key/mathematical behaviours	Marks
determines deseasonalised data	1

MATHEMATICS APPLICATIONS SEMESTER 2 (UNITS 3 & 4) EXAMINATION

Question 9 (a)

0			
50	lut	ION	
00	เนเ	ULI	

BDFG 900 BMDFG 100 BMFG 200 BMPG 900 BMJPG 300 BMJG 800	
Total number of cyclists is 3200	
Marking key/mathematical behaviours	Marks
determines 2 paths and their respective number of cyclists	1
determines a further 2 paths and their respective number of cyclists	1
determines a further 2 paths and their respective number of cyclists	1
determines maximum number of cyclists	1

Question 9 (b)

So	lution

The maximum flow will not be affected so stays at 3200. The edge was not used in determining the path.

Marking key/mathematical behaviours Marks

•	describes the effect on the path	1
٠	justifies conclusion	1

Question 10 (a)

Sol	ution				
	n	1	2	3	3
	Value of boat after <i>n</i> years	\$15 980	\$15 021.20	\$14 1 ⁻	19.93
Mar	Marking key/mathematical behaviours Marks				
determines two values				1	
determines third value				1	

Question 10 (b)

Solution	
6% per annum	
Marking key/mathematical behaviours	Marks
identifies rate of depreciating	1

٦

Question 10 (c)

Solution	
\$1 020	
Marking key/mathematical behaviours	Marks
 identifies the depreciated amount 	1

Question 10 (d)

Solution

Each year the rate is applied to a decreasing amount and thus the rate can be constant but the value is not.

Marking key/mathematical behaviours	
explains difference in rate and absolute change	1

Question 10 (e)

Solution	
Sell at 7000 or less. After 15 years. (n = $15 \rightarrow 6720$ in value)	
	Marks
Marking key/mathematical behaviours	IVIAI KS
determines sell-off value	1
determines time for sell-off.	1

Question 11 (a)

Solution	
AMRWSC 31 days	
Marking key/mathematical behaviours	Marks
identifies critical path	1
determines minimum completion time	1

Question 11 (b)

Solution	
EST = 22 days	
LST = 23 days	
Float time = 1 day	
Marking key/mathematical behaviours	Marks
identifies earliest start time	1
identifies latest start time	1
identifies float time	1

MATHEMATICS APPLICATIONS SEMESTER 2 (UNITS 3 & 4) EXAMINATION

Question 11 (c)

Solution			
(i) The critical path changes to AMPKC and completion time increases by 2 days			
(ii) The critical path is now 37 days and remains the same path			
Marking key/mathematical behaviours	Marks		
(i) identifies path	1		
(i) identifies change to completion time	1		
(ii) identifies path	1		
 (ii) identifies change to completion time 	1		

Question 11 (d)

Solution				
	Activity	Immediate Predecessors	Time (days)	
	А	-	5	
	В	A	8	
	E	В	7	
	F	A	7	
	М	A	6	
	R	Μ	7	
	Р	Μ	8	
	W	F, R	7	
	S	E, W	2	
	Т	F, R	4	
	K	Т, Р	4	
	С	S, K	4	
Marking key/mathematical behaviours			Marks	
lists all activities			1	
lists associated times taken				1
 identifies activities with single predecessors 				1
 identif 	fies activities	with multiple predecessors		1

Question 12 (a)

Solution	
Strong association, points are close to each other on the graph Direction is positive (upward), as cost increases, points are further up.	
	Marka
Marking key/mathematical behaviours	Marks
 identifies strength of the association 	1
 justifies conclusion about the strength using graph's features 	1
 identifies direction of the association 	1
 justifies conclusion about the direction using graph's features 	1

Question 12 (b) Solution

<i>y</i> =14.328 <i>x</i> – 840.25	
Marking key/mathematical behaviours	Marks
 determines equation for least squares line 	1

Question 12 (c)

Solution	
r = 0.8263	
Marking key/mathematical behaviours	Marks
determines the correlation coefficient	1

Question 12 (d)

Solution	
<i>H</i> = 13 x 90 –640 = \$530 000	
Marking key/mathematical behaviours	Marks
substitutes into given equation	1
determines median house price	1

Question 12 (e)

Solution	
The prediction is from within the given data ie interpolated	
Correlation coefficient near 1 thus indicating a strong relationship	
Marking key/mathematical behaviours	Marks
gives one reason to justify reliability of prediction	1
 gives second reason to justify reliability of prediction 	1

Question 12 (f)

Solution	
81%	
Marking key/mathematical behaviours	Marks
identifies coefficient of determination	1

Question 12 (g)

Solution	
\$130 000	
Marking key/mathematical behaviours	Marks
interprets gradient of linear model	1

Question 13 (a)

Solution	
0.7%	
Marking key/mathematical behaviours	Marks
identifies monthly interest rate	1

Question 13 (b)

Solution	
$T_1 = 25000$ $T_{n+1} = T_n \times 1.007 - 250$	
Marking key/mathematical behaviours	Marks
rule is in the correct format	1
correct ratio and subtraction	1

Question 13 (c)

Solution	
24 773.42, \$173.41, \$250, \$24 696.83	
Marking key/mathematical behaviours	Marks
 enters each data value into 4th row of the table 	4

Question 13 (d)

Solution	
250 x 60 = \$15000 paid in instalments. Loan reduced by 25000 – 19431.40 = \$5000 Interest = 15000 - \$5568.40 = \$9341.40	568.40
Marking key/mathematical behaviours	Marks
determines amount by which loan is reduced	1
determines interest paid	1

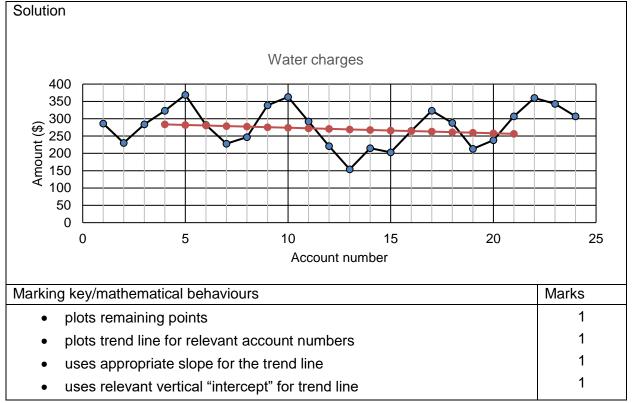
Question 13 (e)

Solution

No. Interest is still calculated once each month so the loan will not reduce any more quickly.	
Marking key/mathematical behaviours	Marks
concludes correctly	1
justifies conclusion	1

Question 13 (f)

Solution	
Another 87 months (total 147 months). Altogether he takes 12 years and 3 month	S
Marking key/mathematical behaviours	Marks
determines n=87	1
interprets 87 in terms of the question	1


Question 14 (a)

Solution	
(0.5x265+323+288+213+238+307+0.5x360) ÷ 6 = 280.25	
Marking key/mathematical behaviours	Marks
 identifies 7 values to use in the expression 	1
determines 6-point moving average	1

Question 14 (b)

Solution	
The data show a cycle of length 6 with a peak every 6 points and a trough every	6 points
Marking key/mathematical behaviours	Marks
explains the cycle length of 6	1

Question 14 (c)(d)

Question 14 (e)

Solution	
July 2018	
Marking key/mathematical behaviours	Marks
identifies year and month	1

Question 14 (f)

Solution	
Account 1	
Marking key/mathematical behaviours	Marks
identifies outlier	1

Question 14 (g)(i)

Solution	
36x25+68=968	
968 x 27% = 261 L per day	
Marking key/mathematical behaviours	Marks
 determines deseasonalised value for account 25 	1
selects correct seasonal index	1
 determines predicted daily water usage 	1

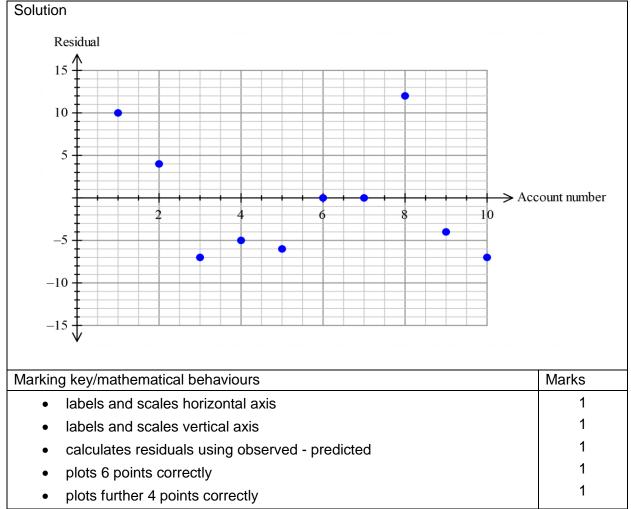
Question 14 (g)(ii)

Solution	
Not reliable as the prediction is extrapolated and the linear model was determine averaged cyclic data	d from
Marking key/mathematical behaviours	Marks
identifies predictability	1
justifies conclusion	1

Question 15 (a)

Solution

The higher the mean score the more likely it is that there is a high percentage of students reaching the highest level. OR The more students there are in the highest level, the greater the mean score is likely to be.


Marking key/mathematical behaviours	Marks
 justifies an association between the two variables 	1

Question 15 (b)

Solution	
3	
Marking key/mathematical behaviours	Marks
distinguishes relevant data in table	1

MATHEMATICS APPLICATIONS SEMESTER 2 (UNITS 3 & 4) EXAMINATION

Question 15 (c)

Question 15 (d)

Solution	
A linear model is appropriate as there does not appear to be a pattern in the loc points on the residual plot.	ation of the
Marking key/mathematical behaviours	Marks
 concludes the linear model is appropriate 	1
 justifies conclusion using residual plot 	1

Question 15 (e)

Solution	
Even though the correlation between the two variables is high (r > from the linear model may not be reliable. The graph showing achi in nature and the data is only given for 10 countries. For one count percentage was negative, and this is not possible	evement looks exponential
Marking key/mathematical behaviours	Marks
 identifies reliability of the linear model 	1
justifies conclusion	1

Question 16 (a)

Solution	
v = 8, f = 7, e = 13 and $v + f - 2 = e$ ie $8 + 7 - 2 = 13$	
Marking key/mathematical behaviours	Marks
 identifies the number of faces, edges and vertices 	3
verifies Euler's rule applies	1

Question 16 (b)

Solution

It starts and ends at the same vertex.

There are no repeated edges or vertices.	
Marking key/mathematical behaviours	Marks
 identifies start and end points 	1
 identifies each edge and vertex used once (except start) 	1

Question 16 (c)

Solution	
OTBAKBSKPSTPWO	
Marking key/mathematical behaviours	Marks
 identifies a route that contains no repeated edges 	1
includes all vertices	1

Question 16 (d)

Solution

It has a closed trail which starts and ends at the same vertex and for which no edges are repeated.

Marking key/mathematical behaviours		Marks
•	identifies edges are not repeated	1
●	identifies starting and finishing at the same vertex	1